3.116 \(\int \frac{x}{\sqrt{a+b x+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=402 \[ \frac{\left (e-\sqrt{e^2-4 d f}\right ) \tanh ^{-1}\left (\frac{4 a f+2 x \left (b f-c \left (e-\sqrt{e^2-4 d f}\right )\right )-b \left (e-\sqrt{e^2-4 d f}\right )}{2 \sqrt{2} \sqrt{a+b x+c x^2} \sqrt{2 a f^2-\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt{2} \sqrt{e^2-4 d f} \sqrt{2 a f^2-\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac{\left (\sqrt{e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac{4 a f+2 x \left (b f-c \left (\sqrt{e^2-4 d f}+e\right )\right )-b \left (\sqrt{e^2-4 d f}+e\right )}{2 \sqrt{2} \sqrt{a+b x+c x^2} \sqrt{2 a f^2+\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt{2} \sqrt{e^2-4 d f} \sqrt{2 a f^2+\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}} \]

[Out]

((e - Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(
2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sq
rt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]) - ((e + Sqrt[
e^2 - 4*d*f])*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*S
qrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*Sqrt[
e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

________________________________________________________________________________________

Rubi [A]  time = 0.962864, antiderivative size = 402, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {1032, 724, 206} \[ \frac{\left (e-\sqrt{e^2-4 d f}\right ) \tanh ^{-1}\left (\frac{4 a f+2 x \left (b f-c \left (e-\sqrt{e^2-4 d f}\right )\right )-b \left (e-\sqrt{e^2-4 d f}\right )}{2 \sqrt{2} \sqrt{a+b x+c x^2} \sqrt{2 a f^2-\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt{2} \sqrt{e^2-4 d f} \sqrt{2 a f^2-\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac{\left (\sqrt{e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac{4 a f+2 x \left (b f-c \left (\sqrt{e^2-4 d f}+e\right )\right )-b \left (\sqrt{e^2-4 d f}+e\right )}{2 \sqrt{2} \sqrt{a+b x+c x^2} \sqrt{2 a f^2+\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt{2} \sqrt{e^2-4 d f} \sqrt{2 a f^2+\sqrt{e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

((e - Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(
2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sq
rt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]) - ((e + Sqrt[
e^2 - 4*d*f])*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*S
qrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*Sqrt[
e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 1032

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx &=-\left (\left (-1-\frac{e}{\sqrt{e^2-4 d f}}\right ) \int \frac{1}{\left (e+\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+b x+c x^2}} \, dx\right )+\left (1-\frac{e}{\sqrt{e^2-4 d f}}\right ) \int \frac{1}{\left (e-\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+b x+c x^2}} \, dx\\ &=-\left (\left (2 \left (1-\frac{e}{\sqrt{e^2-4 d f}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{16 a f^2-8 b f \left (e-\sqrt{e^2-4 d f}\right )+4 c \left (e-\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{4 a f-b \left (e-\sqrt{e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt{e^2-4 d f}\right )\right ) x}{\sqrt{a+b x+c x^2}}\right )\right )-\left (2 \left (1+\frac{e}{\sqrt{e^2-4 d f}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{16 a f^2-8 b f \left (e+\sqrt{e^2-4 d f}\right )+4 c \left (e+\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{4 a f-b \left (e+\sqrt{e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt{e^2-4 d f}\right )\right ) x}{\sqrt{a+b x+c x^2}}\right )\\ &=-\frac{\left (1-\frac{e}{\sqrt{e^2-4 d f}}\right ) \tanh ^{-1}\left (\frac{4 a f-b \left (e-\sqrt{e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt{e^2-4 d f}\right )\right ) x}{2 \sqrt{2} \sqrt{c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt{e^2-4 d f}} \sqrt{a+b x+c x^2}}\right )}{\sqrt{2} \sqrt{c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt{e^2-4 d f}}}-\frac{\left (1+\frac{e}{\sqrt{e^2-4 d f}}\right ) \tanh ^{-1}\left (\frac{4 a f-b \left (e+\sqrt{e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt{e^2-4 d f}\right )\right ) x}{2 \sqrt{2} \sqrt{c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt{e^2-4 d f}} \sqrt{a+b x+c x^2}}\right )}{\sqrt{2} \sqrt{c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt{e^2-4 d f}}}\\ \end{align*}

Mathematica [A]  time = 1.01437, size = 407, normalized size = 1.01 \[ \frac{-\frac{\left (\sqrt{e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac{4 a f-b \left (\sqrt{e^2-4 d f}+e-2 f x\right )-2 c x \left (\sqrt{e^2-4 d f}+e\right )}{2 \sqrt{2} \sqrt{a+x (b+c x)} \sqrt{f \left (2 a f-b \left (\sqrt{e^2-4 d f}+e\right )\right )+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{f \left (2 a f-b \left (\sqrt{e^2-4 d f}+e\right )\right )+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\left (1-\frac{e}{\sqrt{e^2-4 d f}}\right ) \tanh ^{-1}\left (\frac{4 a f+b \left (\sqrt{e^2-4 d f}-e+2 f x\right )+2 c x \left (\sqrt{e^2-4 d f}-e\right )}{2 \sqrt{2} \sqrt{a+x (b+c x)} \sqrt{f \left (2 a f+b \left (\sqrt{e^2-4 d f}-e\right )\right )+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{f \left (2 a f+b \left (\sqrt{e^2-4 d f}-e\right )\right )+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}}{\sqrt{2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

(-(((e + Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f - 2*c*(e + Sqrt[e^2 - 4*d*f])*x - b*(e + Sqrt[e^2 - 4*d*f] - 2*f*x)
)/(2*Sqrt[2]*Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f]))]*Sqrt[a + x*(b
 + c*x)])])/(Sqrt[e^2 - 4*d*f]*Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f
]))])) - ((1 - e/Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f + 2*c*(-e + Sqrt[e^2 - 4*d*f])*x + b*(-e + Sqrt[e^2 - 4*d*f
] + 2*f*x))/(2*Sqrt[2]*Sqrt[c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f + b*(-e + Sqrt[e^2 - 4*d*f]))]*Sq
rt[a + x*(b + c*x)])])/Sqrt[c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f + b*(-e + Sqrt[e^2 - 4*d*f]))])/S
qrt[2]

________________________________________________________________________________________

Maple [B]  time = 0.326, size = 1516, normalized size = 3.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x)

[Out]

-1/2/f*2^(1/2)/(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-
4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*
(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*
c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e
+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/
2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))+1/2/(-4*d*f+e^2)^(1/2)/f*2^(1/2)/(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^
(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b
*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d
*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1
/2))/f)^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*b*f-(-4
*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*e-1/2/(-4*d*f+
e^2)^(1/2)/f*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*
ln(((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2
)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f
^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)
*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^
2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*e-1/2/f*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*
c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-
2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f
+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2)
)/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*b*f+(-4*d
*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 48.0673, size = 23019, normalized size = 57.26 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

1/4*sqrt(2)*sqrt((2*c*d^2 - b*d*e + a*e^2 - 2*a*d*f + (c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*
b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)*sqrt
((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5
+ (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^
4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*
a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3
 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (
b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/(c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*
f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e
^2)*f))*log(-(2*b^2*d^3 - 4*a*b*d^2*e + 2*a^2*d*e^2 + sqrt(2)*(b^2*d^2*e^2 - 2*a*b*d*e^3 + a^2*e^4 - 4*(b^2*d^
3 - 2*a*b*d^2*e + a^2*d*e^2)*f - (2*c^3*d^4*e^2 - 3*b*c^2*d^3*e^3 - 2*a*b*c*d*e^5 + a^2*c*e^6 + 8*a^3*d^2*f^4
+ (b^2*c + 3*a*c^2)*d^2*e^4 - 2*(2*a^2*b*d^2*e + 3*a^3*d*e^2 - 4*(a*b^2 - 3*a^2*c)*d^3)*f^3 + (5*a^2*b*d*e^3 +
 a^3*e^4 - 8*(b^2*c - 3*a*c^2)*d^4 + 4*(b^3 - 2*a*b*c)*d^3*e - 2*(5*a*b^2 - 11*a^2*c)*d^2*e^2)*f^2 - (8*c^3*d^
5 - 12*b*c^2*d^4*e + a^2*b*e^5 + 2*(b^2*c + 9*a*c^2)*d^3*e^2 + (b^3 - 10*a*b*c)*d^2*e^3 - 2*(a*b^2 - 4*a^2*c)*
d*e^4)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6
- 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3
*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8
*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*
a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^
3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))*sqrt(c*x^2 + b*x + a)*sqrt((2*c
*d^2 - b*d*e + a*e^2 - 2*a*d*f + (c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(
b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)*sqrt((b^2*d^2 - 2*a*b*d*e
 + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)
*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2
*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c
 - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c
)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^
2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/(c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^
2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)) + (4*b*c*d^3
+ a*b*d*e^2 - (b^2 + 4*a*c)*d^2*e)*x - (2*a*c^2*d^3*e^2 - 2*a*b*c*d^2*e^3 + 2*a^2*c*d*e^4 - 8*a^3*d^2*f^3 + 2*
(4*a^2*b*d^2*e + a^3*d*e^2 - 4*(a*b^2 - 2*a^2*c)*d^3)*f^2 - 2*(4*a*c^2*d^4 - 4*a*b*c*d^3*e + a^2*b*d*e^3 - (a*
b^2 - 6*a^2*c)*d^2*e^2)*f + (b*c^2*d^3*e^2 - b^2*c*d^2*e^3 + a*b*c*d*e^4 - 4*a^2*b*d^2*f^3 + (4*a*b^2*d^2*e +
a^2*b*d*e^2 - 4*(b^3 - 2*a*b*c)*d^3)*f^2 - (4*b*c^2*d^4 - 4*b^2*c*d^3*e + a*b^2*d*e^3 - (b^3 - 6*a*b*c)*d^2*e^
2)*f)*x)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 -
 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*
b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*
(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a
^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3
)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/x) - 1/4*sqrt(2)*sqrt((2*c*d^2 -
 b*d*e + a*e^2 - 2*a*d*f + (c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 -
2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2
*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e
^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*
d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b
*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)
*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3
- 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/(c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2
- 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f))*log(-(2*b^2*d^3 - 4
*a*b*d^2*e + 2*a^2*d*e^2 - sqrt(2)*(b^2*d^2*e^2 - 2*a*b*d*e^3 + a^2*e^4 - 4*(b^2*d^3 - 2*a*b*d^2*e + a^2*d*e^2
)*f - (2*c^3*d^4*e^2 - 3*b*c^2*d^3*e^3 - 2*a*b*c*d*e^5 + a^2*c*e^6 + 8*a^3*d^2*f^4 + (b^2*c + 3*a*c^2)*d^2*e^4
 - 2*(2*a^2*b*d^2*e + 3*a^3*d*e^2 - 4*(a*b^2 - 3*a^2*c)*d^3)*f^3 + (5*a^2*b*d*e^3 + a^3*e^4 - 8*(b^2*c - 3*a*c
^2)*d^4 + 4*(b^3 - 2*a*b*c)*d^3*e - 2*(5*a*b^2 - 11*a^2*c)*d^2*e^2)*f^2 - (8*c^3*d^5 - 12*b*c^2*d^4*e + a^2*b*
e^5 + 2*(b^2*c + 9*a*c^2)*d^3*e^2 + (b^3 - 10*a*b*c)*d^2*e^3 - 2*(a*b^2 - 4*a^2*c)*d*e^4)*f)*sqrt((b^2*d^2 - 2
*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 +
2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c
 + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 -
8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 +
 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b
*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))*sqrt(c*x^2 + b*x + a)*sqrt((2*c*d^2 - b*d*e + a*e^2 - 2*a*
d*f + (c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*
c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 -
2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a
^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*
b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 -
20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 -
 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*
c^2)*d*e^4)*f)))/(c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2
)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)) + (4*b*c*d^3 + a*b*d*e^2 - (b^2 + 4*a*c)
*d^2*e)*x - (2*a*c^2*d^3*e^2 - 2*a*b*c*d^2*e^3 + 2*a^2*c*d*e^4 - 8*a^3*d^2*f^3 + 2*(4*a^2*b*d^2*e + a^3*d*e^2
- 4*(a*b^2 - 2*a^2*c)*d^3)*f^2 - 2*(4*a*c^2*d^4 - 4*a*b*c*d^3*e + a^2*b*d*e^3 - (a*b^2 - 6*a^2*c)*d^2*e^2)*f +
 (b*c^2*d^3*e^2 - b^2*c*d^2*e^3 + a*b*c*d*e^4 - 4*a^2*b*d^2*f^3 + (4*a*b^2*d^2*e + a^2*b*d*e^2 - 4*(b^3 - 2*a*
b*c)*d^3)*f^2 - (4*b*c^2*d^4 - 4*b^2*c*d^3*e + a*b^2*d*e^3 - (b^3 - 6*a*b*c)*d^2*e^2)*f)*x)*sqrt((b^2*d^2 - 2*
a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2
*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c
+ 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8
*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 +
2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*
c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/x) + 1/4*sqrt(2)*sqrt((2*c*d^2 - b*d*e + a*e^2 - 2*a*d*f -
(c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^
3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^
3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2
 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d
^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b
^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c
^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d
*e^4)*f)))/(c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2
- (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f))*log(-(2*b^2*d^3 - 4*a*b*d^2*e + 2*a^2*d*e^2 +
sqrt(2)*(b^2*d^2*e^2 - 2*a*b*d*e^3 + a^2*e^4 - 4*(b^2*d^3 - 2*a*b*d^2*e + a^2*d*e^2)*f + (2*c^3*d^4*e^2 - 3*b*
c^2*d^3*e^3 - 2*a*b*c*d*e^5 + a^2*c*e^6 + 8*a^3*d^2*f^4 + (b^2*c + 3*a*c^2)*d^2*e^4 - 2*(2*a^2*b*d^2*e + 3*a^3
*d*e^2 - 4*(a*b^2 - 3*a^2*c)*d^3)*f^3 + (5*a^2*b*d*e^3 + a^3*e^4 - 8*(b^2*c - 3*a*c^2)*d^4 + 4*(b^3 - 2*a*b*c)
*d^3*e - 2*(5*a*b^2 - 11*a^2*c)*d^2*e^2)*f^2 - (8*c^3*d^5 - 12*b*c^2*d^4*e + a^2*b*e^5 + 2*(b^2*c + 9*a*c^2)*d
^3*e^2 + (b^3 - 10*a*b*c)*d^2*e^3 - 2*(a*b^2 - 4*a^2*c)*d*e^4)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^
4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b
*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^
3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e -
 (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c
^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c
- 2*a^2*c^2)*d*e^4)*f)))*sqrt(c*x^2 + b*x + a)*sqrt((2*c*d^2 - b*d*e + a*e^2 - 2*a*d*f - (c^2*d^2*e^2 - b*c*d*
e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b
*e^3 - (b^2 - 6*a*c)*d*e^2)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2
*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3
*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a
^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^
2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^
5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/(c^2*d^2*e
^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*
d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f)) + (4*b*c*d^3 + a*b*d*e^2 - (b^2 + 4*a*c)*d^2*e)*x + (2*a*c^2*d^3*e^
2 - 2*a*b*c*d^2*e^3 + 2*a^2*c*d*e^4 - 8*a^3*d^2*f^3 + 2*(4*a^2*b*d^2*e + a^3*d*e^2 - 4*(a*b^2 - 2*a^2*c)*d^3)*
f^2 - 2*(4*a*c^2*d^4 - 4*a*b*c*d^3*e + a^2*b*d*e^3 - (a*b^2 - 6*a^2*c)*d^2*e^2)*f + (b*c^2*d^3*e^2 - b^2*c*d^2
*e^3 + a*b*c*d*e^4 - 4*a^2*b*d^2*f^3 + (4*a*b^2*d^2*e + a^2*b*d*e^2 - 4*(b^3 - 2*a*b*c)*d^3)*f^2 - (4*b*c^2*d^
4 - 4*b^2*c*d^3*e + a*b^2*d*e^3 - (b^3 - 6*a*b*c)*d^2*e^2)*f)*x)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4
*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*
d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3
 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e -
(b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^
4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c -
 2*a^2*c^2)*d*e^4)*f)))/x) - 1/4*sqrt(2)*sqrt((2*c*d^2 - b*d*e + a*e^2 - 2*a*d*f - (c^2*d^2*e^2 - b*c*d*e^3 +
a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 -
 (b^2 - 6*a*c)*d*e^2)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5
 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^
2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*
d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2
+ 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b
^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/(c^2*d^2*e^2 - b
*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e
+ a*b*e^3 - (b^2 - 6*a*c)*d*e^2)*f))*log(-(2*b^2*d^3 - 4*a*b*d^2*e + 2*a^2*d*e^2 - sqrt(2)*(b^2*d^2*e^2 - 2*a*
b*d*e^3 + a^2*e^4 - 4*(b^2*d^3 - 2*a*b*d^2*e + a^2*d*e^2)*f + (2*c^3*d^4*e^2 - 3*b*c^2*d^3*e^3 - 2*a*b*c*d*e^5
 + a^2*c*e^6 + 8*a^3*d^2*f^4 + (b^2*c + 3*a*c^2)*d^2*e^4 - 2*(2*a^2*b*d^2*e + 3*a^3*d*e^2 - 4*(a*b^2 - 3*a^2*c
)*d^3)*f^3 + (5*a^2*b*d*e^3 + a^3*e^4 - 8*(b^2*c - 3*a*c^2)*d^4 + 4*(b^3 - 2*a*b*c)*d^3*e - 2*(5*a*b^2 - 11*a^
2*c)*d^2*e^2)*f^2 - (8*c^3*d^5 - 12*b*c^2*d^4*e + a^2*b*e^5 + 2*(b^2*c + 9*a*c^2)*d^3*e^2 + (b^3 - 10*a*b*c)*d
^2*e^3 - 2*(a*b^2 - 4*a^2*c)*d*e^4)*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2
*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2
 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b
^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2
*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^
2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))*sq
rt(c*x^2 + b*x + a)*sqrt((2*c*d^2 - b*d*e + a*e^2 - 2*a*d*f - (c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 - 4*a^2*d*f^3
 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*a*c)*d*e^2)
*f)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^
4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2 - 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3
 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*
c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*
c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3
*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/(c^2*d^2*e^2 - b*c*d*e^3 + a*c*e^4 -
4*a^2*d*f^3 + (4*a*b*d*e + a^2*e^2 - 4*(b^2 - 2*a*c)*d^2)*f^2 - (4*c^2*d^3 - 4*b*c*d^2*e + a*b*e^3 - (b^2 - 6*
a*c)*d*e^2)*f)) + (4*b*c*d^3 + a*b*d*e^2 - (b^2 + 4*a*c)*d^2*e)*x + (2*a*c^2*d^3*e^2 - 2*a*b*c*d^2*e^3 + 2*a^2
*c*d*e^4 - 8*a^3*d^2*f^3 + 2*(4*a^2*b*d^2*e + a^3*d*e^2 - 4*(a*b^2 - 2*a^2*c)*d^3)*f^2 - 2*(4*a*c^2*d^4 - 4*a*
b*c*d^3*e + a^2*b*d*e^3 - (a*b^2 - 6*a^2*c)*d^2*e^2)*f + (b*c^2*d^3*e^2 - b^2*c*d^2*e^3 + a*b*c*d*e^4 - 4*a^2*
b*d^2*f^3 + (4*a*b^2*d^2*e + a^2*b*d*e^2 - 4*(b^3 - 2*a*b*c)*d^3)*f^2 - (4*b*c^2*d^4 - 4*b^2*c*d^3*e + a*b^2*d
*e^3 - (b^3 - 6*a*b*c)*d^2*e^2)*f)*x)*sqrt((b^2*d^2 - 2*a*b*d*e + a^2*e^2)/(c^4*d^4*e^2 - 2*b*c^3*d^3*e^3 - 2*
a*b*c^2*d*e^5 + a^2*c^2*e^6 - 4*a^4*d*f^5 + (b^2*c^2 + 2*a*c^3)*d^2*e^4 + (8*a^3*b*d*e + a^4*e^2 - 8*(a^2*b^2
- 2*a^3*c)*d^2)*f^4 - 2*(a^3*b*e^3 + 2*(b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^3 - 4*(a*b^3 - a^2*b*c)*d^2*e + (a^2*b^
2 + 6*a^3*c)*d*e^2)*f^3 - (8*(b^2*c^2 - 2*a*c^3)*d^4 - 8*(b^3*c - a*b*c^2)*d^3*e - (b^4 - 20*a*b^2*c + 22*a^2*
c^2)*d^2*e^2 + 2*(a*b^3 - 5*a^2*b*c)*d*e^3 - (a^2*b^2 + 2*a^3*c)*e^4)*f^2 - 2*(2*c^4*d^5 - 4*b*c^3*d^4*e + a^2
*b*c*e^5 + (b^2*c^2 + 6*a*c^3)*d^3*e^2 + (b^3*c - 5*a*b*c^2)*d^2*e^3 - 2*(a*b^2*c - 2*a^2*c^2)*d*e^4)*f)))/x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{a + b x + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d),x)

[Out]

Integral(x/(sqrt(a + b*x + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out